
An Extension of the Boyer-Moore Theorem Prover
to Support First-Order Quantification

SJAN 301.91i I Matt Kaufmann) " b
Computational Logic Inc.

1717 W. Sixth St., Suite 290
Austin, TX 78703, USA

phone: (512) 322-9951 email: kaufmann@cli.comLn I
,'% -LAhLuract. We describe an implementation of an extension to the Boyer-Moore Theorem

()Prove- and logic that allows first-order quantification. The extension retains the capabilities of the
Boyer-Moore system while allowing the increased flexibility in specification and proof that is
provided by quantifiers. The idea is to Skolemize in an appropriate manner. We demonstrate the
power of this approach by describing three successful proof-checking experiments using the
system, each of which involves a theorem of set theory as translated into a first-order logic. We

also demonstrate the soundness of our approach. ,

1. Introduction

The successful use of the Boyer-Moore Theorem Prover "NQTHM" 2 to proof-
check a diversity of theorems is well-documented in [1]. Nevertheless, there are
occasions when its quantifier-free logic may be somewhat awkward or inadequate
because of its lack of explicit quantification. Actually, the current logic does have a
version of bounded quantification, but that notion involves a somewhat tricky concept of
evaluation, similar in flavor to the Lisp EVAL construct. What's more, that logic is
considerably weaker than full first-order logic. 3

We introduce here an interface from first-order logic into the Boyer-Moore logic.
The main idea of our approach is to retain the current prover's strengths while allowing
first-order reasoning. In fact, the examples in the final section of this paper do make use
of the induction capabilities of the Boyer-Moore prover.

We should perhaps emphasize that our use of Skolemization to give the effect of
quantification for a logic is standard. The interest here is that we have been able to use a
carefully-constructed Skolemizer to proof-check some "relatively deep" theorems. By
"relatively deep" we do not mean by current mathematical standards, but rather, by the
standards of existing theorems whose proofs have been checked down to the minutest
details by an automated reasoning program. Moreover, the implementation is stable
enough that it is in general use in the community of users of the Boyer-Moore prover.

'This research was supported in part by ONR Contract N00014-88-C-0454. The views and conclusions
contained in this document are those of the author and should not be interpreted as representing the official
policies, either expressed or implied, of Computational Logic, Inc., the Office of Naval Research or the
U.S. Government.

2This awkward acronym stands for New Quantified THeoreM prover. Ask Boyer or Moore to explain
this!

3For logicians, let us point out that all integer functions definable in the NQTHM logic are easily seen to
be recursive in the halting problem, hence definable with at most two Aternations of quantifiers.

A ~ - of . .. " i,,lW |,

2

The Boyer-Moore theorem prover [1] is generally considered a state-of-the-art
prover for verification of algorithms. However, the lack of first-order quantification is
somewhat restrictive; this work tries to remedy that situation. The papers of
D. Goldschlag on verification of concurrent algorithms [2, 3, 4] and the paper of Y. Yu
on group theory proof-checking [5] make use of this extension.

The rest of this introduction gives a brief description of how we add quantifiers to
the Boyer-Moore paradigm.4 In our discussion here and throughout the paper, we avoid
the Lisp-like syntax of the Boyer-Moore NQTHM logic in favor of a traditional first-
order syntax. More generally, our intention is to make this paper self-contained, without
assuming familiarity with the Boyer-Moore logic or prover.

The main idea is to introduce a new function symbol that abbreviates a given
first-order formula. Consider for example the following definition of a function named
arbitrarily-large-p, which asserts of its input n that there exist arbitrarily large
y such that p (n, y) holds.

arbitrarily-large-p (n)
V x 3 y (x < y A p(n,y))

Our system Skolemizes this equivalence to obtain the following two implications.

C (n) < y A p(n,y) I -
arbitrarily-large-p (n) I
arbitrarily-large-p(n) -i

[x < y(n,X) A p(n,y(n,x))

We hope someday to develop heuristics to support good automatic use of such
implications. However, in the meantime, our interactive "proof-checker" enhancement
of the prover [6], as extended to handle free variables [7], has proved quite adequate, as
illustrated by the examples presented in the final section.

The following section briefly reviews the Boyer-Moore system and carefully
documents how one may use quantifiers. It also includes brief discussions of our
Skolemization and miniscoping (formula-simplifying, cf. deChampeaux [8]) procedures.
Soundness is addressed in Section 3. We conclude in Section 4 with brief descriptions of
three successful experiments employing the new quantifiers mechanism. The full input
files for those proofs may be found in [9], where one may also find further details and
proofs of correctness of our particular brands of Skolemization and miniscoping.

Let us emphasize that the main interest here is in the nontrivial examples that
have been successfully completed with a working implementation. These examples are
summarized in the final section. The following sections serve simply as documentation
for the enhanced logic and system.

Acknowledgements. I'd like to thank my colleagues at Computational Logic for
useful conversations and suggestions during the course of this work. I especially thank
Bob Boyer and J Moore for useful suggestions, as well as the referees of this and of a
previous version of the paper.

4Motivating remark for logicians: the result is essentially first-order Peano Arithmetic or, equivalently,
fi s t -o r d e r fi n i t e s e t t h e o r y . , " A p r t e u D .R-

Statement "A" per telec n r. Ralph . . vz a,;irarWachter ONR/Code - 1133.\ Spo\t !- ' ' ["it cial'

u a iiad i m m I m II4

3

2. Documentation

The Boyer-Moore Theorem Prover and its logic are carefully and thoroughly
documented in [1]. The logic is a variant of Pure Lisp [10], which in turn may be viewed
as an equational variant of first-order logic. There is an inference rule for induction and a
rule for recursive definition. A session with the system may include definitions, axioms,
and theorems to be proved. Theorems may be annotated to be stored as rewrite rules, and
such theorems are used automatically by the system in future proofs. User actions such
as definitions and theorems are sometimes referred to as events. A sequence of events
built on top of the "ground-zero" (built-in) logic is sometimes called a history.

This note introduces a new NQTHM event, DEFN-SK, together with a
corresponding extension to the Boyer-Moore logic. The "SK" is in honor of Thoralf
Skolem, for whom the various well-known Skolemization algorithms are named.
Skolemization maps a first-order formula to a formula without quantifiers, and hence
gives us a way to "interpret" first-order formulas in a slight extension of the Boyer-
Moore logic, with minimal changes to the theorem provc,.

Although the Boyer-Moore Theorem Prover is fully automatic in one sense, it is
quite interactive in a more fLndamental sense. Typically the user submits a theorem,
look at the prover's output to see where the proof failed, and then proves additional
rewrite rules before trying the proof again, until finally the proof is obtained
"automatically".5 In fact it is quite common for users to undo definitions, fixing "bugs"
in them before trying proofs again that previously failed. Hence, we want the output of
our Skolemization procedure to provide terms that are helpful, i.e., both "strong" and
somehow intuitive, when we attempt to reason about them. We have therefore decided to
provide a rather basic Skolemization procedure that doesn't provide too many surprises,
but to allow a mildly "smart" miniscoping process. The input formula may then be
replaced by a "better" formula that is equivalent (by miniscoping) to it; this "better"
formula is the one that is Skolemized.

The syntax for formulas is given in Subsection 2.1. Skolemization and
miniscoping are discussed in Subsections 2.2 and 2.3 respectively. The DEFN-SK event
is documented in Subsection 2.4. We close in Subsection 2.5 with some remarks.

2.1. Formulas

Fix a history, i.e. a sequence of events (including definitions and theorems). A
Boyer-Moore term is (as specified in [1]) a variable symbol or a function application of
the form f (t 1 , ... , tn), where f is defined in the current history (or is built-in)
and each t1 is a term. A (first-order) formula is either a Boyer-Moore term, a
propositional combination of formulas, or a quantification of a formula. By a
propositional combination of formulas we mean any expression of the form (-, x), (x
A y), (x v y), (x - y), or (IF t TREN x ELSE y), where x and y are
formulas and t is a term. A quantification of a formula is any expression of the form (V
v) x or (3 v) x, where v is a variable and x is a formula. As usual we may write
(xi ^ ... A x,) as an abbreviation for (xI A (x 2 A (... (xn-I A

5Some users get more direct control of !he proof process by using the PC-NQTHM interactive
enhancement [6].

4

xr) ...)));similarly for 'v'. We also allow (Q v1 ... v.) x, where Q is V or
3 and n is a non-negative integer, as an abbreviation for (Q v1 (Q v2 ... (Q v.
x) ...)). Finally, (x 4-* y) abbreviates ((x -- y) A (y -(x))

We will feel free to use familiar notions about formulas, such as the notion of free
variable. Such notions are explained in any logic textbook; see for example [11].

2.2. Skolemization in Brief

For now let us discuss Skolemization in an abstract framework. In fact our actual
algorithm is quite standard so we omit it hzrc (sec [91 for details), although we wiii
comment on it below.

Let F be a set of function symbols and let 0 be a first-order sentence (i.e. formula
without free variables), all of whose function symbols are contained in F. Let xV be a
quantifier-free formula (i.e. term) with universal closure 6 x'y. Then i is said to be a
Skolemization of 0 with respect to F if for any set S of first-order sentences, all of whose
function symbols are included in F, (1) the extension of S by the sentence [0 -4 4f'] is
a conservative extension of S,7 and (2) the sentence [V' -4 0] is a theorem of S. If
we don't mention F, then it is taken to be the union of the set of function symbols in
together with those of the current history. The function symbols of '4 that do not occur in
F are called the Skolemfunctions of '4.

Consider for example the formula (V x) (3 y) p (x, y). It's easy to see
that p (x, f (x)) is a Skolemization of this formula in the sense above, as long as f does
not occur in that formula or in the current history. However, on more complicated
formulas one can get different results depending on the particular Skolemization
algorithm used. Briefly, our particular algorithm Skolemizes from the outside in, and
Skolem functions depend only on the variables in their scopes. For example, consider the
following definition of a formula @:

04 3 z (p(x) -4 V y p(y))

Our Skolemization of this biconditional (not just of 0!) is as follows, where sk-x and
sk-y are the Skolem functions introduced, and hence sk-x () and sk-y () are the
applications of these functions to no arguments, i.e. they are constants.

[[p(z) --+ p(sk-yo) I

A

- E p(sk-z()) -4 (p y)

6Recall that the universal closure of a formula l' is a formula (V vi ... v) i where (v1 ...

v.) is an enumeration of the free variables of W.
7That is, it proves no new theorems in the language of S.

5

Thus, to prove 0, it suffices to find an x such that we can prove

p(x) -- , p(sk-yo)

and of course, the application of the function sk-y to no arguments serves as the desired
x. Compare this approach with the approach of letting the Skolem functions depend on
"governing" quantified variables that have been encountered as one dives into the
formula. With the latter approach, the Skolem function sk-y will have x as an
argument, and we will may have trouble proving 0 since no instantiation for x turns the
term p (x) -* p (sk-y (x)) into a tautology. (As Bob Boyer points out, even in the
latter approach a resolution proof is found quite trivially; but our point here is to treat
Skolemization in a manner that is convenient in the context of the Boyer-Moore rewriting
approach.)

2.3. Miniscoping in brief

We have just seen the desirability of reducing the number of variables on which
the Skolem functions depend. One finds a method in deChampeaux [8] that has such an
effect; the idea, which is sometimes called miniscoping, is to push quantifiers inward as
far as possible. 8 In this work we choose a very simple method along these lines.
Consider the following example.

q(z) o* 3 x V y (p(z,z) -4 p(y,z))

A natural Skolemization provides Skolem function for y that depends on both x and z:

[[p(x,z) -- p(sk-y(x,z),z)
- q(z)]

A

p - [p(sk-x(z),z) -+ p(y,z)
-4 -, q(z) I

As in the previous example, the first conjunct is not quite sufficient to prove q (z)
"naturally". But if we first move the (V y) quantifier inward (which is legal since y
does not occur in p (x, z)), and then move (3 x) inward, we obtain

q~z) [((V z) p(x,z)) -- ((V y) p(y,z))

and this has a "better" Skolemization:

SHowever, a referee has pointed out that there are often occasions where distribution of existential

quantifiers over disjunctions can result in introduction of more Skolem functions than is desirable.

6

[[p(Z,z) -+ p(sk-y(z),z) I
--- q(z) I

A

- [p(sk-x (z),z) -- p(y,z)

For, now q (z) is clear by instantiating x to sk-y (z) in the first conjunct above.

All we require of this miniscoping procedure is that it transform every first-order
formula to one that is logically equivalent to it.

2.4. New event: Defining first-order notions

We extend the Boyer-Moore logic by adding a new "axiomatic act" called
DEFN-SK. The following "formal section" describes the extended logic, while the
"manual section" describes our implementation. Let us fix Skolemization and
miniscoping algorithms meeting the specifications given in the preceding subsections.

(formal section)
Let 0 be a first-order formula with respect to a given history (sequence of axioms)

h whose free variables are contained among the set (v1 , ... , v.), where v1, ..., v.
are distinct variables. Let g be a function symbol of arity n that does not occur in h.
Suppose that sk is a Skolemization of the first-order sentence

(V V1 ... v,) (g(v1, ... ,v,) € 0

with respect to a set of function symbols that contains g together with all function
symbols of h. Then it is permitted to extend h by adding sk as an axiom.

(manual section)

General Form: (DEFN-SK name args form &optional directives)
Example Form (in traditional first-order syntax):
DEFN-SK:
bar(z) t (3 x) (V y) [p(x,z) -. p(y,z)]
FORMULA: ((V x) p (x, z) - ((V y) p (y, z))
PREFIX: sk-

Here

" name is the name of the new Boolean-valued function representing the
(quantified) notion being introduced, e.g. bar in the example above.

" args is the list of formal parameters for this new function. In the example
above, the only formal parameter is z.

" form is a frust-order formula (in the "extended syntax" described above),
e.g. (3 x) (V y) (p(x,z) -4 p(y,z)) in the example above.

* directives is a list of instructions on how to store this event. For
example, the "FORMULA directive", which is ((V x) p (x, z)) -4

7

((V y) p (y, z)) in the example above, is a first-order formula such that
the result of applying the miniscoping procedure to that formula and to
form must be the same, up to renaming of bound variables. In that case,
Skolemization is applied to the formula supplied there rather than to the
original formula. The "PREFIX directive" in the example above,
"PREFIX: sk-", indicates that each Skolem function name will begin
with the string "SK-". The directives, which can also include one of the
form "SUFFIX: ... ", are optional.

Let us comment further on this form. First, args should be a list of distinct
variables that includes all free variables of form. Let args be (arg, ... argn),
let u be name (argl, . .. , argn), and let body be form unless a FORMULA directive
is supplied, in which case body is that formula. Consider the following first-order
sentence:

(*) (V arg1 arg2 ... argn) (u 4- body)

The effect of this event is to add as an axiom a Skolemization of this sentence, with
respect to the result of adding name to the set of function symbols of the current history.
In fact this axiom is added as a pair of rewrite rules (as described in the next subsection).
Moreover, the entire axiom becomes the formula associated with name9 , so that it may
be referred to in, for example, a USE hint of a PROVE-LEMMA form. If a PREFIX or
SUFFIX directive is supplied, then the indicated prefix (and/or suffix) is tacked on to the
front (respectively, back) of the name of each Skolem function generated. Finally, the
system stores the fact that name always returns T or F.

2.5. Further remarks

(i) A macro DEFN-FO is provided for generating good FORMULA directives.
DEFN-FO works by applying miniscoping to the given formula and, provided that the
result differs from the given formula, generating a FORMULA directive with that resulL

(ii) Consider the example above. In that case, the formula associated with bar is
the conjunction of the following two formulas, each of which is made into a rewrite rule
(also) named BAR. Notice that the second of these is written as the contrapositive of
what one might have otherwise expected, in order to put it in a form guaranteed
appropriate for a rewrite rule. The conclusion of the first is handled just as though it
were (bar (z) = T) (where T is "true"), while the conclusion of the second is
handled just as though it were bar (z) = F.

[[p(x,z) -4 p(sk-y(z),z) I
-+bar (z) I

[-, [p(sk-x(z),z) -+ p(y,z)
-, - bar(z)]

(iii) We claim that it is a theorem of the new history that the application of name

9for Boyer-Moore experts: the result of evaluating (FORMULA-OF ' name)

8

to -ogs is equivalent to form. That is, the formula (*) in the "formal section" above is
a theorem of the new history. This is because the new axiom provably yields (*), by the
specification of Skolemization given in Subsection 2.2 above. Conversely, it is
conservative to add this axiom, in a sense we now make precise.

3. Soundness

In this section we state and prove theorems that demonstrate the soundness of our
approach. It is helpful to recall that DEFN-SK extends a history by adding a term in the
(quantifier-free) logic. However, it was shown above that the first-order formula (*)
implicit in that DEFN-SK event is indeed a theorem of the resulting history (when that
history is viewed as a set of first-order formulas).

First, recall the following standard definition: a set S2 of first-order sentences that
contains a set S1 is a conservative extension of S1 if any theorem provable from S2 that
is in the language (alphabet) of S, is in fact already a theorem of S1 .

The following simple theorem shows that DEFN-SK gives conservative
extensions. It follows that consistency is preserved by DEFN-SK, since conservative
extensions preserve consistency: if S2 is a conservative extension of a consistent set S1

then since F (false) is not a theorem of S1 , F is not a theorem of S2.

Soundness Theorem for DEFN-SK 10 . Suppose we embed the Boyer-Moore
logic into a traditional first-order logic, such as that of [11], turning the induction
principle into a collection of axioms, admitting existential quantifiers and the existential-
quantifier introduction-rule. Then a DEFN-SK event, as defined above, results in a
conservative extension of the previous theory.

Proof. Suppose we extend a history h to a new history h' by adding a
Skolemization of the first-order sentence (V v1 ... vn) (g (vl, ... ,vn) 4-*
body), where all free variables of body are among (vl, ... , vnI and g is a new
function symbol (and the Skolemization is with respect to some set containing g along
with all function symbols of h). Let h1 be the history obtained by adding the above first-
order sentence to h, and let h2 be the union of h, and h'. Then h1 is a conservative
extension of h since it's simply a definitional extension (cf. [11]). And h2 is a
conservative extension of h, by the property of Skolemization given in Subsection 2.2.
So for any first-order sentence A in the language of h, if h' I- A then h2 -- A (since h2

extends h'), hence h, I- A (by conservativity of h2 over hl), hence h I- A (by
conservativity of h, over h). -I

The paper [121 contains an argument that shows the correctness of the
implementation of an event called FUNCTIONALLY-INSTANTIATE, which, roughly
speaking, allows one to replace some function symbols in a theorem with others that
satisfy those symbols' defining axioms. However, that argument assumes an underlying
logic that does not have DEFN-SK. In Appendix C of [9] we provide the main lemma
required to extend the arguments in [12] to the case that
FUNCTIONALLY-INSTANTIATE is added to a version of the logic that includes

t°This is analogous (even to its wording!) to a corresponding note about the new CONSTRAIN event in
121.

9

DEFN-SK.

4. Examples

The purpose of this section, indeed of this paper, is to demonstrate that our
DEFN-SK interface from first-order logic into the Boyer-Moore logic enables one to
mechanically proof-check interesting theorems. We treat three separate examples here.
Complete proof scripts may be found in the final three appendices of [9]. Our intention
in this section is to give just enough detail so that the reader can see what it is that we
have verified and to get some idea of our approach.

All three examples are translations of theorems of set theory into our first-order
extension of Boyer-Moore logic. While we do not claim that all of set theor> have such
natural translations, still we feel that these examples demonstrate that our approach can
deal with interesting set-theoretic results.

All of these examples introduce axioms using the CONSTRAIN mechanism
reported in [12]. CONSTRAIN is simply a consistent (in fact, conservative) way of
adding axioms. The first subsection below says a little more about CONSTRAIN; full
details may be found in [12].

All three examples below make heavy use of the "proof-checker" enhancement
(PC-NQTHM) of the Boyer-Moore prover, as reported first in [6] and then extended in
[7] to implement a notion of free variables. The proofs especially used the macro

command SK* documented in [7] to eliminate notions defined by DEFN-SK. Space does
not permit a detailed description here of macro commands in general or SK* in
particular, suffice it to say that SK* works by automatically applying the Skolem axioms
and backchaining. In fact, in the first two examples we were able to extract, usually
without much difficulty, the requisite applications of the Skolem axioms so that we could
replace "low-level" use of PC-NQTHM by hints to the NQTHM prover. We hope to
implement something akin to the proof-checker's treatment of free variables, as used in
these proofs, in the Boyer-Moore prover someday; then the aforementioned USE hints
should not, we hope, be necessary.

We continue to use familiar first-order syntax in place of the officiai Doyei-
Moore Lisp-like syntax, which may be found in [9]. Comments are to be found in italics,
preceded by semicolons.

4.1. Koenig's Tree Lemma.

Koenig's Tree Lemma states that every infinite, rooted, finitely-branching tree
has an infinite branch. Rather than explain these terms here, we will simply state the
axiom in our formalization of Koenig's Tree Lemma after providing some intuition.

We identify a node of such a tree with the sequence of positive integers that
represents the path from the root of the tree to that node, most recent "turn" first. For
example the node r321 pictured below corresponds to the sequence (3 2 1).

10

r121 r221 r321 r112

rll r2i r12
\ / i

rl r2\ /

In particular, the empty sequence nil represents the root of the tree. And the less-than
relation is represented by the notion of "terminal subsequence", which (in the usual style
of the Boyer-Moore logic) we define recursively.

In the Boyer-Moore text below, comments appear in italics and are indicated by
placing a semicolon to indicate that the rest of that line is a comment. Here we are
making a definition in the Boyer-Moore logic (albeit using familiar first-order syntax
rather than Lisp syntax), according to a principle of (possibly recursive) definition that is
conservative when the Boyer-Moore logic is viewed as a subset of first-order logic with
induction. So for example, the following definition defines subseq to be a function of
two arguments, called sl and s2, which returns the indicated value. The predicate
listp holds of non-enpty sequences, while the function cdr takes the tail of a list.

DEFINITION.
subseq(si, s2)
;; sl is the result of popping some elements off the top of s2
(IF (sl = s2)

THEN t ;;true
ELSE
(IF - listp (s2) ;; fs2 is not a pair, thenfalse:

THEN f
ELSE
;; otherwise, _i and s2 are distinct and s2 is not empty,
;; so we check that si is a subseq of the tail of s2.
subseq(sl,cdxr(s2))))

Here then is the axiom that introduces an appropriate trce, by way of a predicate node-p
that recognizes the nodes of (i.e. finite paths through) the tree. That is, node-p recognizes
the legal paths. We enforce that the tree is finitely-branching by introducing a function
succard ("Successors Cardinality") that, for a given node in the tree, returns the
number of immediate successors of that node. The CONSTRAIN mechanism guarantees
consistency of the axiom by requiring us to give example functions that make the axiom
true. In fact, the theorem prover checks the conservativity (hence consistency) of the
following axiom by checking that it holds when node-p is replaced by all-ones,
succard (s) is replaced by 1 (for all s), and s-n (n) is replaced by ones (n) (for all
n). As usual, we take minor liberties with the syntax, for readability; the precise event
form may be found in [9]. The function cons is the list constructor;, thus, cons (a, s)
represents the result of tacking a on to the front of the list s.
CONSTRAIN event (constraining axiom)

NAME of event: KOENIG-INTRO

AXIOM:

node-p (nil) ;; nil is the root

11

A

o noie-p is a predicate
.aode-p(s) = t v noda-p(s) = f I

A

the successors of s are determined by succard (Successors Cardinality)
noda-p(s) -+

[node-p (cons (n, s)) t-
;; n is in the set {1, ... , succard (s)
(0 < n A n S succard(s))]

A

The tree is closed under initial subsequences.
(node-p(sl) A subseq(s,sl)) -* node-p(s) I

A

;; We stipulate that the tree is infinite by saying that s-n is a one-one enumeration of nodes.
node-p(s-n(n)) A [(0 < i A 0 5 j A i * j) - s-n(i) # s-n(j)]
A

Nodes are proper lists, i.e. lists terminating in nil - a technicality we won't explain further.
[plistp(s) -+ - node-p(s)]

WITNESSES:
LET
node-p(s) - all-ones(s) ;s consists of all ones
succard(s) a1
s-n(n) =_ ones(s) ;;sequence ofn ones

HINT to theorem prover for proof that the witnesses satisfy the axiom:
(DISABLE subseq)

Our approach is to follow the natural proof in which one builds a branch through the tree
"nonconstructively" as follows. Starting at the root, we maintain the invariant that the
top node on the branch constructed so far has infinitely many successors (not immediate
successors, of course!) in the tree. So given the current top node, we extend the branch
by choosing an immediate successor that has infinitely many successors -- note that if
each immediate successor had only finitely many successors, then the given top node
would have only fimitely many successors (since the tree is finitely-branching), which
would violate the invariant.1 1 Here is the DEFN-SK event that formalizes the notion of
"s has infinitely many successors", in the sense that s has arbitrarily high successors in
the tree.

DEFN-SK:
inf(s) It
(V big-h) (3 big-a)
[subseq(s,big-s) A node-p(big-s) A big-h < length(big-s)l

This adds the Skolem axiom

IlComment for logicians. It's well known that there are infinite, recursive, finitely-branching, rooted
trees without infimite recursive branches, and in fact this result relativizes to any oracle. This strongly
suggests that there is no way even to formulate Koenig's Lemma in the unmodified, constructive Boyer-
Moore logic.

12

[[subseq(s,big-s) A

node-p (big-s) A
big-h(s) < length(big-s) 1

-4 inf(s)
A

- [subseq(s,big-s(big-h,s)) A

node-p (big-s (big-h, s)) A

big-h < length (big-s (big-h,))
-- -4 inf(s) I

Our method for reasoning about INF is to use the PC-NQTHM [61 enhancement of the
Boyer-Moore prover, as extended to support free variables [71, to deal with the free
variables introduced by backchaining with the Skolem axioms. (See the brief discussion
on SK* preceding this subsection.) The final theorem is as follows. It says that the
function k enumerates an infinite sequence of nodes, each of which is an initial
subsequence of the next, such that the nth node has height n for all n.

n> 0

node-p(k(n)) A

(j > i -4 subseq(k(i),k(j))) A

length(k (n)) = n]

Let as make c,,e last technical point. A key to the proof is the following definition,
which is explained below.

DEFINITION.
all-big-h(s,n)
(IF n=0

THEN (length (s) + 1) ;; then return the successor of the length of s
;; otherwise, return a "big enough" number, as explained below
ELSE
big-h(cons(n,s)) + all-big-h(s,rn - 1))

This function returns a number that is bigger than big-h (cons (s, i)) for all positive
i < n and is also bigger than length of a. Here, big-h comes from the definition
(DEFN-SK) of inf above; roughly, big-h is a function that has the property that if
there is a node of length at least big-h (s) extending a given node s, then there are
nodes of arbitrarily large height extending s. When we are looking to extend a given
node s to a branch as in the proof outline above, the idea is to use the inf (s)
hypothesis (invariant) to find an extension sl of s of length at least
all-big-h (s, succard (s)). We may then note that sl extends some immediate
successor sO of s, and by definition of all-big-h this node is high enough in the tree
to guarantee inf (sO).

4.2. Ramsey's Theorem.

Ramsey's Theorem for exponent 2 says the following (in the finite version). Let
P be a partition of the 2-element subsets of a given infinite set A into a finite number of
pieces, say n pieces. (One can visualize here a space of nodes where each pair of nodes

13

is connected by an edge of one of n given colors.) Then there is an infinite subset H of A
such that all pairs from H lie in the same piece of the partition. (In terms of our graph
picture, all edges between pairs of nodes from if are of the same color.)

This theorem has a proof that is rather similar in flavor to the Koenig's lemma
proof described in the immediately preceding subsection. 12 For simplicity we assume
that the partition is on pairs of natural numbers, and we call it p-num. However, we
immediately define a function p that makes sense for all pairs (by coercing them to
numbers for p-nua). Think of bound () below as the number of "colors"; we are
partitioning the pairs into the set (1, ..., bound (.

CONSTRAIN event (constraining axiom)
NAME of event: P-NUM-INTRO

AXIOM:

CO xAO_<yl

0 < p-num(x,y) A
bound() > p-num(x,y) A
p-num(x,y) = p-num(y,x)

WITNESSES:
LET
p-num(x,y) S 1
bound() = 2

DEFINITION ;; a technicality, needed since the logic is untyped
p(x,y) F
;; Coerce x and y to natural numbers before applying p-num to them.
p-num(fix (x),fix(y))

We follow along a standard proof of this theorem. One defines a notion of
prehomogeneous set, which says that for numbers i < j in such a set, the value of the
partition on the pair { i, j) should depend only on i. In order to formalize this notion
we actually consider lists of pairs <i, c> whose first component i is the number and
whose second component c is the intended color. The auxiliary function
PREHOM-SEQ-1 takes arguments a and x, where one may think of x as being a list of
pairs <i, c> as above, each i being less than a, where this function checks that c is the
right color for the pair (i, a). In the following definition, we take some syntactic
liberties in order to increase readability, using pattern-matching where none really exists
in the NQTHM logic, and using notation [... I to represent lists.

12A proof of a formalization of this version of Ramsey's Theorem has also been carried out by
Ketonen [13].

14

DEFINITION.
;; x is a list of pairs <ic>, and this says that for each such pair, p(ia) = c.
prehom-seq-1 (a, [I) a t ;;return truefor the empty list

prehom-seq-i (a, [<ill ci>, <i 2, C2>, ... , <i n, on>] M -
P(il Ia) = C1 A
prehom-seq-l (a, [<i 2 , C2 >1 ... , <i n cn>])]

DEFINITION.
;; Recognizes lists of pairs such that if <j,c'> precedes <ic>, then i < j and p(ij)=c.
prehom-seq ([]) - t ;; The empty list isprehomogeneous.

prehom-seq ([<i, c>]) a t ;; A singleton list isprehomogenous.

prehom-seq ([<i 1 , c,>, <i 2 , C2>, ... , <i n, cU>])
[i 2 < i1 A

prehom-seq-1 (il, (<i21 c 2 >, ... , <i n,cn>]) A
prehom-seq([<i 2,c 2>, ... , <incn>D I

Continuing with the proof: the idea now is to define an increasing sequence of natural
numbers that forms a prehomogeneous sequence. Each member i of this sequence gets a
co! or such that the value of the partition on any pair (i, j), where j is also in the
sequence and i < j, depends only on the color associated with i. But since there are
only finitely many colors, one must appear infinitely often in this prehomogenous
sequence. Then the subsequence corresponding to that color forms the desired
homogeneous set.

However, in order to construct the desired prehomogeneous sequence we need a
stronger invariant than prehomogeneity. That invariant is expressed by the first of two
introductions of quantifiers in this proof, which says roughly that s has arbitrarily large
extensions to a prehomogeneous sequence:

DEFN-SK:
extensible (s) c
;; holds iff there are infinitely many a such that prehom-seq-1(a.s).
(V above) (3 next)
C above < next A prehom-seq-1(next,s)]

We omit here the definition of ramsey-seq(n), which is a strictly decreasing
prehomogeneous sequence of length n, and of ramsey-iindex (n), which uses
auxiliary quantifier definitions to return the index of the nth member of ramsey-seq
that has the "right" color. Here is our definition of the desired prehomogeneous
sequence, where the function car both takes the frst member of a list and takes the first
component of a pair.

DEFINITION.
ramsey(n) a
car (car (ramsey-seq(ramsey-index (n))))

The final theorems are as follows. They say that the sequence of numbers ramsey (i),
as i runs through the positive natural numbers, is a strictly increasing sequence that is
homogeneous. We omit the definition of the constant (function) color here, since how
it is defined is not particularly important, as long as the following theorems can be

15

proved.

i < j -+ ramsey (i) < ramsey(j)

(0 < i A 0 : j A i * j) -4
p-num(ramsey(i),ramsey(j)) = color()

4.3. Schroeder-Bernstein Theorem.

The Schroeder-Bernstein Theorem says that for any sets a and b, if there is a
one-to-one function from a to b and also a one-to-one function from b to a, then there is
a bijection from a onto b.13 We followed the proof sketch given in Exercise 8 of
Chapter 1 of [14]. The following axiom introduces our assumptions.

CONSTRAIN event (constraininq axiom)

NAME of event: FA-AND-FB-ARE-ONE-ONE

AXIOM:

;;fa is one-to-one
(a(Z) A a(y) A X # y) -4
fa(x) * fa(y)]

A

;;flb is one-to-one
(b(x) A b(y) A X y) --

fb(x) * fb(y)]
A

;; the image offa on a is contained in b
[a(z) ---> b(fa(x)) I

A

;; the image ofjb on b is contained in a
C b(x) -+ a(fb (x))

the characteristic functions a and b are boolean-valued
A

(a(x) = t v a(z) = f) A (b(x) = t v b(x) = f)

WITNESSES:
LET
fa and fb be the identity function
a(x) M t
b(x) a t

Here is the idea of the proof. Imagine that sets a and b and functions fa and fb
which satisfy the CONSTRAINt above. Now imagine that we take the images of a and b
under fa and fb, respectively. Let us write aO and bO to denote a and b, respectively,
and let al and bl be the respective images. We can of course repeat this process as

130thers have mechanically verified versions of this theorem, in particular, a Theory of Constructions
proof (perhaps first done by Gerard Huet) and one by a system under development by Kurt Ammon
(personal communication).

16

many times as we like, letting a (i+1) be the image ofb (i) under fb and b (i+l) be
the image of a (i) under fa. Let a* be the intersection of the sets a (i) and let b* be
the intersection of the sets b (i).

-- > fa ---- >

I I I II---------------- I-----------------
I------------- II------------II

I I I I II I I II I

III~ ~ \a*_/ I II I *
II .. II III .. I I

I ---- a2 I I --- b2 --- I
- al . . bl -

- aO bO--------
<----. fb <--

We say that a point in a (i) is circled by i. For x e a with x e a*, let us define the
a-level of x in a to be that i such that x belongs to a (i) but not to a (i+1), i.e. that i
such that x is circled by i but not by i+1. Define analogous notions for b. Then a
one-to-one correspondence may be constructed by mapping the even a-levels and a* into
b via fa and by mapping the odd a-levels into b via the inverse of fb.

We give only a brief proof outline here. Below are a few of the key definitions
and lemmas to give some flavor of the proof, but we do not claim that this list is in any
way complete. A complete input file may be found in [9]. The reader unfamiliar with
Lisp should read ' a and ' b below as any distinct constants.

DEFN-SK:
in-fa-range(z) €

(3 fa-l) (a(fa-I) A fa(fa-l) = x)
;; Similar definition of in-no-range is omitted here.

DEFINITION.
circled(flg,x,n)
;; Ifflg is 'a, returns t iffx is in a-n in the sense of Kunen's proof. Similarly for b iffig is not 'a.
(IF (flg = 'a)

THEN
(IF n=O THEN a(x)

ELSE (in-fb-range(x) A circled('b, fb-I (x),n - 1)))
ELSE
(IF n=O THEN b(z)

ELSE (in-fa-range(Z) A circled('a,fa-l(x),n - 1))))

DEFN-SK
a-core(z)
;; Introduced "inductively" so that the level will be tight -- similar definition of b-core is omitted here.

a (z) A
(V a-level) [(0 < a-level A circled('&, z, a-level)

-* circled('a, z, a-level + 1) 1]

LEIA. A-CORE-NECC ;; similar lemma B-CORE-NECC is omitted
-' circled('a,z,n) - a - a-core(z)

17

LEMMA. A-CORZ-SUF? ;; similar lemma B-CORE-SUFF is omitted
[(a(Z) A (0 _5 a-level(i) A circled('a, z, a-level(x))

-+ circled('&, z, a-level(z) + 1)3
-a-core (z)

DEFINITION.
parity(n) rc
(IF zi=0 THEN t

ELSE -, parity (n - 1))

DEFINITION. ;; the isomorphism
j W(x)
(IF (a-core(x) v parity(a-level (x))

TEN fa(IW
ELSE fb-l(z))

DEFINITION. ;; the isomorphism's inverse
j-1(y)a
(IF (b-core (y) v -, parity (b-level (y))

TEEN fa-1 (y)
ELSE fb(y))

LEMMA. B-CORE-FA
;;fa maps a-core, and only a-core, into b-core -- similar lemma A-CORE-FB is omitted here
a(z) -4 (b-core(fa(x)) 4- a-core(z)

LEMMA. CIRCLED-HONOTONE
(circled(flg,z,j) A j 2t i

-4 circled (flg,x, i)

LEMMA. B-LEVEL-FL
;.fa increases the level by 1; similar lemma A-LEVEL-FB omitted here

a (X) A -, a-core (z))
-b-level(fa(x)) = a-level(z) + 1

LEMMA. J-1-J
a (z) -4 j -1(j (z)) z

LEMMA. A-CORE-FA-1
iri-fa-range Cy) -4
C a-core (fa-1 (y)) ** b-core (y)

LEMMA. A-LEVEL-FA-i
((b Y) A -, b-core (Y) A in-f a-range (y)
-a-level(fa-l(y)) = b-level(y) - 1

LEMMA. J-J-1
b(y) -4 j(j-l(y)) = y

LEMMIA. J-ISONE-ONE
a(Zl) A a(z2) A Zl * z2
* j(xl) * j (x2)

18

DKFN-SK
j-iao() t*

j ;;maps a into b
(V x) (a (z) -- b (j(z)) A

;;j is one-one
(V xl z2)

a a(Ml) A a (Z2) A j (Xl) = j (Z2))
-xl = %2A

;j is onto
(V y) (b (y) -~(3 x) (a (Z) A j (X) =y)

THEOIRZM. J-IS-AN-ISOMQRPHISH
i-iso ()

19

References
1. R. S. Boyer and J S. Moore, A Computational Logic Handbook, Academic Press,

Boston, 1988.

2. David M. Goldschlag, "Mechanically Verifying Concurrent Programs with the
Boyer-Moore Prover", IEEE Transactions on Software Engineering, Vol. SE-16,
No. 9, September 1990.

3. David M. Goldschlag, "Proving Proof Rules: A Proof System for Concurrent
Programs", Compass '90, June 1990.

4. David M. Goldschlag, "Mechanizing Unity", in Proceedings of the IFIP TC2
Working Conference on Programming Concepts and Methods, M. Broy and
C. B. Jones, eds., Elsevier Science Publishers B.V., 1990.

5. Yuan Yu, "Computer Proofs in Group Theory", J. Automated Reasoning, Vol. 6,
No. 3, September 1990.

6. Matt Kaufmann, "A User's Manual for an Interactive Enhancement to the Boyer-
Moore Theorem Prover", Tech. report 19, Computational Logic, Inc., May 1988.

7. Matt Kaufmann, "Addition of Free Variables to an Interactive Enhancement of
the Boyer-Moore Theorem Prover", Tech. report 42, Computational Logic, Inc.,
May 1989.

8. D. de Champeaux, "Subproblem Finder and Instance Checker, Two Cooperating
Modules for Theorem Provers", J. Assoc. for Comp. Mach., Vol. 33,
October 1986, pp. 633-657.

9. Matt Kaufmann, "DEFN-SK: An Extension of the Boyer-Moore Theorem
Prover to Handle First-Order Quantifiers", Tech. report 43, Computational Logic,
Inc., May 1989.

10. McCarthy, J., Abrahams, P.W., Edwards, D.J., Hart, T.P., Levin, M.I., MIT, LISP
15 Programmer's Manual, 1962.

11. J. R. Shoenfield, Mathematical Logic, Addison-Wesley, Reading, Ma., 1967.

12. Robert S. Boyer, David M. Goldschlag, Matt Kaufmann, and J Strother Moore,
"Functional Instantiation in First Order Logic", Tech. report 44, Computational
Logic, Inc., May 1989.

13. Jussi Ketonen, "EKL - Ramsey Theorem", Tech. report, Department of
Computer Science, Stanford University, December 1986.

14. Kenneth Kunen, Set Theory: An Introduction to Independence Proofs, North-
Holland, New York, 1980.

